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Hamilton's Principle gives a classical variational characterization of

a solution of Hamilton's equations as a critical point of an appropriate

functional.

principle and which can be used to prove the existence of periodic solutions

to Hamilton's equations.

We develop a method here which is spiritually related to this
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A VARIATIONAL METHOD FOR FINDING PERIODIC SOLUTIONS
4 OF DIFFERENTIAL EQUATIONS

Paul H. Rabinowitz

T

§1l. Introduction

= Our goal here is to describe a method for finding peri-
odic solutions of ordinary and partial differential equa-
tions. More accurately it is a procedure for finding criti-
cal points of indefinite functionals. Rather than give an
abstract formulation of this method, we nrefer to illustrate
it in a more concrete setting. Accordingly some applications
will be stated followed by thei. detailed treatment by means

of our procedure.

We will mainly stay in the setting of Hamiltonian sys-
tems of ordinary differential eguations. Thus consider such
a system:

(1.1) p=-H_ , §= Hy

q

where p, g ¢ r" , H= H(p.q):‘Rzn + R, and -+ denotes
d/dt. Equivalently (1.1) can be written as

i

(1.2) = gH,

o and J = (2 -g). I denoting the

where z = (b,q) € R
identity matrix in »
Our first result concerns the existence of periodic so-

lutions of (l1.2) on a prescribed energy surface:

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024
and by the Office of Naval Research under Contract No. N00014-76-C-0300.




Theorem 1.3: If H ¢ Cl(ltl’n ,R) and satisfies
(#)) ®, *0 on H (1),

2n-1  ; o. the

H~1(1) is radially diffeomorphic to S
2n-1

(H,)

mapping z -+ T%T' nla) +s is a diffeomorohism,
then (1.2) possesses a periodic solution on H 1(1).

Observe that the period of this solution is a priori un-
known and indeed determining it is one of the main difficul-
ties to be overcome in the course of the proof of Theorem
1.3. An interesting open question under the hypotheses of
Theorem 1.3 is whether better lower bounds for the number of
geometrically distinct sclutions can be given. For the spe-
cial case of H(z) a positive definite gquadratic form plus
higher order terms, it has been shown by Weinstein [1]) that
for each small b, (1.2) has at least n distinct periodic
orbits on H Y(b). It is temoting to conjecture that the
same lower bound holds for our set-up.

Next we state a result for (1.2) where the period rather
than the energy is prescribed.

Theorem 1.4: Suppose H ¢ CI(Rzn R) and satisfies

(By) H(z) >0 for all z ¢ R°",

(H,) H(z) = o(lzlz) at z = 0,

4
(Hs) There is an T > 0 and 0 ¢ (0.%) such that
0 < H(z) < °"'“z‘z”n2n for |s] > F.

Then for any 7t > 0, (1.2) possesses a nonconstant 1 peri-
odic solution.

At first glance, Theorems 1.3 and 1.4 apvear to be
rather different results, but in fact Theorem 1.3 can be ob-
tained as a simple consequence of Theorem 1.4. Alternative-
ly, a direct proof can be given following the lines of our
solution procedure. The ideas that are used in the proof of
Theorem 1.4 work equally well if H depends explicitly on t
in a time periodic fashion, i.e. we have a forced rather than
free vibration situation, and one seeks a solution of (1.2)
having the same period as the forcing term.

We suspect that a sharper conclusion obtains under the
hypotheses of Theorem 1.4, namely for all 1 > 0, (1.2)
possesses a nonconstant periodic solution with 1t as




minimal period. To merely get a T periodic solution does
not require the full strength of the hyvotheses of Theorem
1.4. In fact we have the following generalization of this
result:

Theorem 1.5: Suppose H ¢ Cl(mzn ,R) and satisfies (H
Then for any T, r > 0, there is a Tt periodic solution
z(t) of (1.2) having llzllt‘_ > r.

5) -

Simple examples show the period 1t need not be minimal
if we only assume (Hs). Theorem 1.4 is of course a conse-
quence of Theorem 1.5. However we prefer to give separate
proofs of these results since the latter requires the intro-
duction of some additional topological machinery which can be
bypassed in proving Theorem 1.4 directly.

For comparison purposes, we conclude our list of theo-
rems by stating an analogue of Theorem 1.4 for a partial dif-
ferential equation. Consider the semilinear wave equation

e = Y + f(u) =0 , 0 <x<m, te R

u(0,t) = 0 = u(nr,t) .

(1.6)

Theorem 1.7: Suppose f ¢ Cz(l!,ll) and satisfies
(fl) f 1is strictly monotone increasing,

(f,) f(x) = of|r]) at r =0,

(f3) there are constants T > 0 and 6 ¢ (0,%) such that

F(r) = Ir f(s)ds < 6 r £(r) for r > r.
0

Then for any Tt which is a rational multiple of =n, (1.6)
possesses a nontrivial classical solution which is 1 peri-~
odic in ¢t.

The greater technicalities involved in working with
(1.6) required imposing more restrictions on the nonlinear-
ity f and on the period 7t than in Theorem 1.4. We do not
know whether (fl) or the rationality condition on 1 w1 can
be eliminated. Likewise it is not known if there is an ana-
logue of Theorem 1.3 in this setting. The details of the
proof of Theorem 1.7 can be found in [2] and will not be fur-
ther discussed here.

g
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Our approach towards the above results is by means of
the calculus of variations. We try to find solutions of (1.2)
or (1.6) as critical points of corresponding functionals. For
exanple, in the context of Theorem 1.4 with 1 = 2nv, we seek
critical points of the corresponding Lagrangian:

(1.8) [Plp.g) | - H(2))at
0 K

while for (1.6) (and Tt = 2v) the analogue of (1.8) is

1.9) Io"'(l"l-} w2 - ud) - Flulax at .

To treat the set up of Theorem 1.3, we first make a chanae
of time variable t + 27 1™}t = A"lt, where T is the un-

known period,so that (1.2) transforms to
(1.10) z = g8,
and the unknown period becomes 27. Then working in the

class of 2v periodic functions, we search for critical
points of the action integral

(1.11) Aa) = [P"(p,@) [ at
0 R
subject to the constraint
(1.12) g [PTH(zae = 1 .
0

Formally the unknown period then appears in (1.10) via the
Lagrange multiplier .

As was mentioned at the beginning of this section, the
above functionals are indefinite. In particular, they are
neither bounded from above nor from below and the quadratic
parts of (1.8) and (1.9) have infinite dimensional subspaces
on which they are positive and on which they are negative.
Thus obtaining critical points of (1.8), (1.9), or (l.1ll) -
(1.12) is a subtle matter and we do not know how to carry
this out in any direct fashion. An approximation procedure
is used instead. First the functional is restricted to a
finite dimensional subsvace of (Lz(sl))zn. Secondly a
minimax argument is employed to obtain a critical value and




corresponding nontrivial critical point for the finite dimen-
sional problem. Thirdly the minimax characterization of the
critical value is used to obtain bounds for the critical value
and critical point. Having sufficient estimates, we can use
standard arquments to pass to a limit to find a solution of
(1.2) (or (1.6)). Lastly in the context of Theorems 1.4, 1.5,
or 1.7, an additional argument is required to be sure that the
solution obtained is nontriviz'. %2 shall give a detailed
illustration of this method in

There does not seem to have been much work of the nature
of the above theorems in the literature. Our results,
Theorems 1.3 - 1.4 can be found in [3]. Theorem 1.5 is new.
Earlier Seifert [4] studied the Fuler-Lagrange equations
corresponding to the Lagrangian Q - U where Q(x,x) =
) aij(x)iiij is positive definite in x, ajy(x) and U(x)
are real analytic in a domain G < lf‘. U=E and Ux #* 0
on 3G, U<E in G, and G is homeomorphic to the unit
ball in R". Using geodesic arouments from differential
geometry, he showed that the Euler-Lagranae eauations for
Q - U possess a time pericdic sclution with energy E. More
recently, in work done concurrently with our own, Weinstein
[5) extended Seifert's arguments and results replacing 0 - U
by H(p,q) = K(p,q) + U(q) where U is as above and K is
even and convex in p for fixed q. As an application, he
obtained a variant of Theorem 1.3 with (H,) replaced by
the condition that H }(1) bounds a convex region. Some
other results of a special nature have been obtained for re-
lated problems by Berger (6], Gordon (7], Clark (8],
Jacobowitz [9], and Hartman [10]. A considerable amount of
work has also been carried out on bifurcation questions for
Hamiltonian systems. We refer the reader to Berger (6},
Weinstein (1], [(11], Moser [12], Bottkol [13], Chow-Mallet-

Paret (l14], and Fadell-Rabinowitz (15) for more information.
Theorem 1.4 will be proved in §2 using the procedure
outlined above. Then an elementary proof of Theorem 1.3 will

be carried out in §3 using Theorem 1.4. Lastly in §4 we
prove Theorem 1.5. To carry out our method here, we intro-
duce a topological index theory which was develoved in [15])
and which forms the basis for the minimax constructions used
for this theorem.
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§2. Proof of Theorem 1.4

The proof of Thecrem 1.4 will be given in this section.
Observe that no upper bound is placed on the rate of growth
of H at infinity. This creates some technical problems
which we get around by introducing a new Hamiltonian He
which coincides with H for |z| < K and grows at a pre-
scribed rate at infinity. Let K > ¢ and X ¢ C (R' .R*)
such that X(s) = 1 if s <K, X(s) =0 if s >K + 1, and
X'(s) <0 if s ¢« (K, K + 1). Now set
(2.1) He(2) = X([2DH(2) + (1 = x(JzD)o 2| *

where o = p(K) satisfies

(2.2) o> K+ 1Y max  H(2) .
|2 |=K+l
Then “K « Cl(Rzn .R) and satisfies (Hj) - (H‘). Moreover

a calculation using (2.2) and (Hg) shows Hy satisfies (HS)

with 8 replaced by g = max(e.}). Setting =z = r w where

w ¢ 8301, (Hg) implies that
d Hx(r w) %
(2.3) whoraie—— % e HK(I w)
for r > r. On integration (2.3) gives
8-1
(2.4) He(z) > alz| - a,

for all 2z « ‘2n

independent of K.
The Hamiltonian system corresponding to H

where the positive constants al, a, are

X is

(2.5) te g .

Instead of seeking Tt-periodic solutions of (1.2) or (2.5),
it is convenient to make the change of variables

¢t +2r v ¢ 227 ¢ transforming (1.2) and (2.5) into
(2.6) g =1 7u,
(2.7 ie g

respectively. We seek 27 periodic solutions of (2.5) =
(2.7). Theorem 1.4 will be obtained with the aid of the

ceLud




analogous result for (2.7):
Theorem 2.8: If H satisfies (Hy) = (W), then for any
K>Tr and any v > 0, (2.7) possesses a nonconstant 2w
with

periodic solution 2

K

(2.9) s

0

(2 (%) .Nutlx(t)))“:n at < N,

where Ml 18 indevendent of K.,

Proof of Theorem 1.4: For each K > r, by Theorem 2.8 we

have a nonconstant solution 2y of (2.7). It suffices to
show that for K sufficiently large, ||3KH « © K. Then
L

Heg(2) = N(ax) 0 2, satisfies (2.6). The following

lemma provides the desired bound on =

X'

Lemma 2.10: There exists a constant M, independent of K
S— -

such that iz |l _ < N

2t

Proof:

Ry

(2.11) Ho(T) < 8(ZT.M

X < xe (8)) ¢ M

b}
R.n 3

2n

for all ¢ ¢ R with M, independent of K. Taking

{ = zx(t) in (2.11), integrating, and using (2.9) yields

i - 2w N
(2.12) % Helz)dt < 0 M)+ 2wNy .

Since Ty satisfies the Hamiltonian system (2.7), NK(:K)

18 independent of t. Consequently by (2.12),

1o

(2.13) He(2) < g7 My + N

) .

and (2.13).
The proof of Theorem 2.8 will now be carried out using

and the lemma now follows from (2.4)

the program sketched in the Introduction., To begin, set

(2.14) te) = [Tl -\ M) de
0 ®

where z(t) = (p(t), q(t)). Then I(e) is defin"d on B8,

the Hilbert space of 2n - tuples of 2r verviodic func-

tions which are square integrable and have square integrable

P



first derivatives, i.e. E = ('1,2(51))2n under the asso-
ciated inner product. Formally a critical soint of I in
E is a weak solution of (2.7).

The first step in our solution procedure is to approxi-
mate I on E by a finite dimensional problem. This is
easily done here. Let e . 1 < k < 2n denote the usual or-
thonormal bases in n?n o T G = tis 0::2290), wto. Sat

E, = span{(sin jt)e,, (cos jt)e |0 < § < m, 1< k < 2n)

Now we simply consider I restricted to B‘.

The next step in our program is to obtain a nontrivial
critical point for X|n‘. The following lemma supplies an
existence tool. Let R - {€ ¢ leltl <rl. Por k ¢ 3,
let R* = (€« ® (€= (g, 0008, 0,000,00 and (RN
(€« BT e (0,000,0,8 00000 )

Lemma 2.15: Let ¢ ¢« C}(RJ,R), Xk < §, and W:R) + R
such that #(L) < ¥(L) for all £ « lj. Suppose

(¢) ¥ <0 forall ¢ r*

(02) There is a constant § > 0 such that & > 0 in
B\ (0 o (RMY

(03) There is a constant u > 0 such that ¥ < 0 in

®» e .
Then ¢ has a positive critical value b characterized by
(2.16) b = inf max *(h(£))
hel Cc‘unlk'l
where

Tehccd, o ®* w0 = cie v <o .

Proof: A proof of Lemma 2.15 can be found in [2] or [16]).
To apply Lemma 2.15 to Ils‘. identi fy x_ (under
=1l 3) witnh R} where j = 2n(2m + 1) and take
L

¢ V- !I:.. To verify the hypotheses of the lemma, we in-
troduce a convenient bases in 8‘. Set

i




3k = (sin jt)ek

(cos jtle, . ,0 <j <m 1<k <n

+

wjk = (cos jt)ek -

(sin jt)ek*

+

ejk = (sin jt)ek (cos jt)e

k+n

zjk + (cos jtle, (sin jt)e

k+n
+
and take E = span(vjk. wjk|j € N, 1 <k <n},
E = span(ejk,
E? = spaniy vl 1l <k<n). Ten E', B, E° are or-
P ok’ Yok - N B ¢+ B ¢

m
thogonal subspaces of En whose span is Bm. Let

o et +
:jkl) €« N,1<k<nl, E " =F nE, and

A = [Mp,a) _ar
0 R

the action integral. It is easy to verify that A > 0 on

r“;\(o}, A<O0 on E\(0}, and A =0 on .
R « g°

Choosinag
e Em—' (Rk# = Em*, ana R = Eo ® Em- ® span
(‘11} : V,+ it now follows from (H3)’ (), and (Hg) re-
spectively that (@l), (02), and (03) are satisfied. Thus by
Lemma 2.15, I|{g has a positive critical value b, with

' o :
corresponding critical point Zn

The third step in our procedure is to use the minimax
characterization of bm to obtain bounds on bm and z -
Lemma 2.17: There are constants H‘, MS independent of m
and K and constants MG’ M

for all m > 1,

) independent of m such that

(2.18) by < M

.
(2.19) [P M (2 B, (2g)) 5o At < Mg
0 R
(2.200  lzgll , < Mg
L
s pl 3 WY
@21 lizgllg = (all?y + lzglly " < ny

Proof: Observe that h(z) = z ¢« I'. Hence by (2.16),

(2.22) 0 <by < max I < max I
B aVp v

u m
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where by (03) max rather than sup can be used in the right
hand inequality. Any function 2z ¢ Vm can be expressed as

(2.23) z(t) = Hzllbz(c(t)cos w + (Zn)-l/zwll(t)sin w)

where [ ¢ Eg e E , llcllL2 =1, and w ¢ [0,2m]. Choosing 1
z=2 ¢V, which R Ilvm, (2.22) - (2.23) show that

(2.24) A joz“nxti)dt <3 uiniz

Using (2.4) and the Holder inequality to estimate the right
hand side of (2.24) yields

a-1
~ e 1,~ 2
(2.25) a3l|2||L2 -a, < §IIZIIL,

for some constants ay, a, independent of m and K. Since
§ <2 2.9 provides a bound on ||z|| , independent of
m and K, say s

Nz < My .
LZ - '8

Returning to (2.22), we find
2:
M8 = M4 .

N =

(2.26) B < IiE) <
To verify (2.19), note first that since z, = (o, a)
is a critical point of Ilgm)
= 2" . L4
(2.27) 0=1I'(z)¢ = Io [(pm.w)nn + ("'qm)nn
= X(C.sz(zm))nzn]dt

for all ¢ = (¢,¥) ¢ E; where I'(§)t denotes the Frechet
derivative of I evaluated at £ and acting on . Using
(2.2), (HS)' and some simple estimates, (2.27) with ¢ = z
gives

(2.28) b= I(zy) - 3 I'(zg)zg >
2n

of
0

(zm'HKz(zm))Rant = Gy

-10=
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where o = min(% - 8, }) and ag is independent of m and
K. Thus (2.19) follows from (2.28) and (2.18).

The definition of Hy and (2.19) yield (2.20).

Lastly (2.27) is employed again with ¢ = 3 im to ob-
tain (2.21). By the Schwarz inequality,

(2.29) ui,,,uLz < Ml Gl 5 < agh » iz 112)
L

where ag depends on K but not on m. Hence

3

The Gagliardo-Nirenbera inequality (17] implies that

(2.31) Izl g < aplizlly® u:ut{’

for all 2z ¢ E. Hence combining (2.30) - (2.31) and (2.20)
gives (2.21).

The fourth step in our vroof is to use these estimates
to get a solution of (2.7). Indeed it now follows from
(2.21), the Sobolev Imbedding Theorem [17], and (2.27) that
a subsequence of z.  converges weakly in FE and strongly
in L” to a continuous function Ty 5 (px,qK) satisfying

+ (Voq.K) n
R

2n *
(2.32) 0 = [“"[(pg,¥)
0 L

\(c.nxl(zx))nznldt

for all ¢ = (¢,¥) ¢ UV Ey : E. Thus L is a weak solution
. o ml
of (2.7). Since E 1is dense in E, (2.32) implies (2.7)

holds a.e. But since "xz(zx) is continuous, so is :

K

and =z is a classical solution of (2.7). Note also (2.19)

K

implies that 2y satisfies (2.9).

The final step in the proof of Theorem 2.8 is to show

that %k is not a constant. The convergence already estab-

lished for z_ implies that b = T(z) » I(zK) : bk along

m
some subsequence. S:nce bm > 0, bK >0 If 1a
stant, by (“3)'

K is a con-




i

2n
I(zy) = - x[o Hel(z dde < 0

so bK = 0. The following lemma shows this is not possible

and consequently z is nonconstant.

K
Lemma 2.33: bK > 0.
Proof: A lower bound will be obtained for b in terms of

K
a comparison problem. By (H‘) and the definition of HK,for

any € > 0, there is a constant Ac > 0 and depending on K
such that

A 2n
(2.34) He(z) < § |21+ £ 121 2} = c(a)
for all =z ¢ Rzn. Set
(2.35) J(z) = [2"((p.q) L - AG(z)lae .
0 R

Then by (2.34) -(2.35), I(z) < J(z) for all z . E. Taking

¢ = J|lp , and v = I|, , the form of G implies that hypothe~

ses (@1 and (oa)of mma 2.15 are satisfied here. Moreover

for e.g. ¢ < %,the quadratic part of J is positive definite
on Em+ which implies that J]g also satisfies (02). Hence

(2.16) defines a critical value e of J such that

(2.36) 0<c, <b .

If w, 1is a critical point of J| corresponding to
S then
(2.37) Cn J(wm) 5 J (wﬂ)w.

2n
A 2n 4
=z A_[U() wlae
'y €0 jey ™

The estimates of Lemma 2.17 and convergence arquments follow-
ing it apply to W' Hence along a subsequence, N, W
satisfying

w=1J G, (w)

"

and c_ + J(w) c > 0.

e

T P R

{
1
|
{
|
|




If bK = 0, by (2.36), ¢ =93, and by {(2.37), w £ 0.
Therefore " + 0 in L.. We will show that in fact there
is an a > 0 such that IIWHIIL_ > a. Dropping subscripts,

we set w=w + W where W ¢ EC and W ¢ !h’ ® qm-' From
(2.27) for J' with § = w, we have

(2.38) an(elw|? + A, 2{‘ vi)
=1
2
2¥,-3 3.~
= A { [T (] = w)iw, 8¢ .
G
Hence
2
(2.39)  2n f‘;:

2{‘

2“ _2 - 2 3-.
< - €W W, o+ 3w, wE o+ wlw,ae
- 1 -t el | L

which together with the Holder inequality and some simple
estimates leads to

(2.40) %] < "’""":." A

Another application of (2.27) for J' with ¢ = g W yiells

.2 2
(2.41) W15, < 2 ¢ IWII2, + agllwll®,
L L L

where a8y depends on ¢. Since W has mean value zero, it
is easy to show that

(2.42) Wil o < o8, .
L A
Combining (2.40) - (2.42) gives
2 2 2 6 6
(2.43) ||w||L_ < 8n c||w||L. + 2mag (1 + ag) ||w||L_ .

Since (2.43) is valid for all ¢ « (o,}]. we choose

€ = (16w2)'1. Then (2.43) provides a positive lower bound

for Ilwmn « and therefore for men « independently of
L L

«13-




This completes the proof of Lemma 2.33 and of Theorem

2.8.

Remark 2.44: If H depends explicitly on t in a time
periodic fashion and satisfies (H3) - (HS), the argument of
Theorem 2.8 gives a nonconstant periodic solution of

(2.45) z =) g He,(t,2)

where Hx(t.z) is defined in a similar fashion to (2.1).
However the argument of Lemma 2.10 no longer suffices to
eliminate the K dependence and some further hypotheses on
H seem necessary. See [3].

§3. Proof of Theorem 1.3

In this section we will give an elementary proof of
Theorem 1.3 based on Theorem 1.4. To begin we reolace H by
a more tractable Hamiltonian. The following lemma provides
a class of admissable replacements.
Lemma 3.1: Let H, fie CH(R®™,R) with w }(1) =T® 1)
and H,, H,* 0 on Hl(1). If t(t) satisfies

(3.2) E =g W,

and 7 (0) e H-l(l), then there is a reparametrization z(t)
of ¢ (t) which satisfies (1.2). 1In particular if g (t) is
periodic, so is z(t).

Proof: Since H_l(l), 771(1) are level sets for H, i re-
spectively, and H (1) = gy, H,(z) = v(z)H,(z) for all
Z ¢ H-l(l) where 0 < v(2z) ¢ C(H-l(l),lu . Moreover since
(3.2) is a Hamiltonian system and & (0) e 1), Tt lies
on H1(1) for all te R. Setting z(t) = ¢ (r(t)) where
r(0) = 0 and r satisfies

(3.3) ar - v
it follows that =z satisfies (1.2).

For the periodic case, a bit more care must be exercised
since the right hand side of (3.3) is merely continuous and
therefore the initia' value problem need not have a unique
solution. If ¢ is T-periodic, let t be the first posi-
tive value of t such that r(t) = T. Replace r by




s(t) = r(t), t ¢ [0,€)] and s(t) = jT + r(t-jt) for

t € [jt,(3+1)t), j ¢ Z. Then it is easy to verify that

S ¢ Cl(R:nﬂ and z(t) = 7(s(t)) has period t.

Proof of Theorem 1.3: It suffices to find a periodic solu-

tion of (3.2) for an appropriate choice of H. As in §2,
after a change of time variable, (3.2) becomes

(3.4) z=1gH,

and we seek a 2n periodic solution of (3.4). To define H,
let 8 e " (1), s2™1) be the mappina given by (H,).
For each z ¢ R°®\{0), there is a unique a(z) ¢ RY and
w(z) ¢ H'1(1) such that z = aw. Indeed wiz) = B-I(TiT)
and alz) = 2] |wie)]"). Let H(0) = 0 ana H(s) = a(s)d,
z2#0. Then e C'(R®™,R) and satisfies (Hy) - (Hg). In
particular by the homogeneity of H, 8 = % in (Hs) and

Hz #0 if 2z # 0. Hence by Theorem 1.4 with 1 = 27n, (3.4)
(with XA = 1) possesses a nonconstant 2n-periodic solution
u(t). Since (3.4) is a Hamiltonian system, H(u(t)) = p, a
constant. It need not be the case that p = 1. However, by
the homogeneity of H, for any y # 0,

(3.5) (i) = y"% 5 H,(va)
and
(3.6) Aiya) = v% .

Choosing Y = p-1/4, H(yu) =1 and yYu is a 2n periodic

solution of (3.4) with ) = y'z. The proof is complete.
Remark 3.7: Using the oroof of Theorem 2.8, it is not diffi-
cult to obtain upper and lower bounds for X and then via
Lemma 3.1 for the period of the solution of (1.2).

§4. Proof of Theorem 1.5

We follow the procedure used in §2, modifying it where
necessary. In particular by eliminating hypotheses (H3) -
(H4), Lemma 2.15 which provided the existence basis for
Theorem 1.4 is no longer applicable and a replacement is
needed. To get one, we exploit a group structure inherent
in our problem which has not yet been emvloyed.
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Let z(t) ¢ E. We can write

2(e) = § a eldt s y(e

j--.

n

where ay ¢ € and a_y = a;. Let (Ljz)(t) = z(t+o) for

o ¢ [0,2n]. This family of translations induces an S1
it) for w ¢ sl. we
call mappings of E to E which commute with this action or
real valued functions on E which are constant along orbits
of the action equivariant maps and subsets V of E for
which L,V + Vv for all o ¢ [0,3u] are cglled invariant.
It is easy to verify that Ene Em‘, and E are invariant
subspaces of E and I(z) as defined in (2.14) is an equi-
variant map. Note also that Eo

action on E given by (ww)(eit) = ¢ (we

is a fixed point set for
{Lo|° e [0,2n]} and there are isotropy subgroups. of the
action of arbitrary order in Sl.

To take advantage of the above S1 action, we will use
a cohomology index theory developed in [15]. Let ¢ denote
the family of invariant subsets of E\{0).
Lemma 4.1: There is a mapping i:& + N v (=}, i.e. an in-
dex theory such that for all U, V ¢ €&,
1° If there is an f c(u,v) where f is equivariant,
then i(U) < i(V).

2° iU vV < i(U) + i(V)
3° If U is closed, then there is a closed invariant neigh-
borhood V of U such that i(V) = i(U).

®® For z ¢ E\E?, if slz = {Lyzlo € [0,27]}, then

itslz) = 1. :

o 0.1 2

5 If F is an invariant subspace of (E') , the L or-

thogonal complement of Bo, then i(F n &) = % dim F where
{ is the unit sphere in E.

6° If U is contained in a finite dimensional subspace of
E, I(U) < » if and only if U n Bo = ¢.

Proof: The definition of index and proofs of its properties
can be found in (13].

-16-




One further property of i(:) will be useful later.
Lemma 4.2: If PckE is an invariant subspace containing
vy n
E', dim F > 2n(m + k + 1), and U ¢ € with U c K, and
i(U) > n(m - k) + 1, then F n U v ¢,

Proof: The invariance of F implies the same for F*! g L
Suppose F n U = ¢. Then P the L2 orthogonal projector
of B to P E,+ belongs to c(u,(F! n sm)\(o)) and Pm

m
is equivariant. Hence by 1° of Lemma 4.1,

(4.3) 1) < A(P(W) <i(uy) <i(8nF' 0B

where Um denotes the radial projection of Pm(U) to

e nFa En Since dim En ™ 2n(2m + 1) and dim P >
2n(m + k + 1), dim F* o E; < 2n(m - k). Therefore by 5° of
Lemma 4.1,

(4.4) i(gnF' nE) <nlm-k .

But (4.3) -~ (4.4) are contrary to the hypothesis on i(U).
Hence F n U # ¢,
Now we can give a variant of Theorem 2.8.
Theorem 4.5: If H satisfies (Hg), then for any X > r and
T >0, (2.7) possesses a 2n periodic solution.
Remark 4.6: As in Theorem 2.8, it is not just existence but
also K independent estimates for the solution that are cru-
cial for the sequel. It is inconvenient to present them at
this point and they will be stated in the course of the proof.
The notation of §2 will be used in what follows. As
earlier we begin by considering I|. . With the aid of the
above index theory and several ideas from [18), we will ob-
tain a family of critical values of this function. The def-
inition of H implies that there arve constants M and AM'

K
the latter depending on K, such that

(4.7) He(2) < M+ Aylz|Y = 32

for all z ¢ Rzn. Since “K satisfies (Hs). there is an R

depending on m and K such that for all R > K,
I(z) < =2n)MM for 2z ¢ Bm\BR. We choose any such R for now
and will subject it to one further restriction later. Set

0 -
Yo "R R o-pan{vu.vullf_ig_k.lijgn} .

4




Then an is an invariant subspace of Em. Let

(4.8) r_ = {h ¢ C(Em.Em)Ih is an equivariant homeomorphism

of E, onto En and h(u) = u if I(u) < - 2m\M} .

The reason for normalizing h by the - 2n\M term will be-
come clearer later. Now define
(4.9) Sy ™ inf _max I(h(u)) 1 <k <m
hel'_ ueB_nV
m R "mk
Lemma 4.10: For any k < m, Cak 18 a critical value of

IIB and
m

(4.11) c > = 2WAM .,

mk

We postpone the proof of Lemma 4.10 for now and complete

the
Proof of Theorem 4.5: Since h(z) = z ¢ rm, by (4.9),
(4.11), and (Hs),
-2 <, < “n‘\’ax I(z) .
mk

Replacing (2.23) by

z(t) = ||z 2 (L(t) cos w + £(t) sin w)
L

where [ and w are as earlier and ¢§ ¢ svan ('ij"ijl
14 <kel ) <nl with JEl 5 = 1, the oroof of Lemma
L

2.11 proceeds essentially unchanged with the factor of % in
(2.24) - (2.26) revlaced by k. Thus we obtain estimates for

ok and Yok a corresponding critical point, which are
independent of m:
(4.12) Cak < Mg
(4.13) v, Moote 3} o @ N
P 0 mk ' Kz''mk m2n -5
(4.14) Ve 1l o < Mg
(4.15) v 1l < My
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where N‘ - Ns depend only on k and N‘ - N7 depend on k
and K. Now as in §2, a subsequence of Wox Sonverges to a
function W & Rew and LY satisfies (2.7).

Thus Theorem 4.5 is proved modulo Lemma 4.10. Once
(4.11) has been established, the lemma is a consequence of
the following result. For ¢ ¢ R, let
? ac-(x¢sdou):c) and Yc-(l(EJQH)-c and

¢'(z) = 0).

Lemma 4.16: Suppose ¢ ¢ cz(!'.l) is equivariant, there
exists an R > 0 such that @&(z) < - 2n)AM for z ¢ Sm\l..
&€>0, ¢ >~-2nlM, and & is any invariant neighborhood of
Y- Then there is an # « (0,8) and n « C([0,1) x B ,K)

RAR T PRATR

o
5% If x, = 6 (1A ,,) <@

c-&
Proof: With the exception of 1°. the Lemma is a svecial case
of a standard result. Therefore we will only sketch the
proof indicating in the process why 1° is satisfied. More
details can be found in [19) or (20]).

By making € smaller if necessary, we can assume

such that |
& 1° n(s,*) is equivariant for each s ¢ [(0,1)
‘ ! 2° n(s,*) is a homeomorphism of E, onto E  for each
§ s ¢ (0,1)
i 3° n(s,2) =2 if @(2) / [c-F,c+8)
4 ‘O
,i

AT

(4.17) T<le+2amma~t =

The assumption on R implies 0'1(lc-5.c+?l)c iR which is
i compact (and therefore ¢ trivially satisfies the Palais-
: | Smale condition in ik)' Choose any & ¢ (0,f). The func-
tion n is determined as the solution of an ordinary differ-
ential equation:

(4.18) R avim . neo,2) = s
for z ¢ B . To define V, let A= @..7 v (R \a 5) and
B = ac*e n (Bm\ae-e)‘ Note that these sets are invariant and

-19-




1

therefore g(z) = |lz-Al| 2(Ht-il| 2 * llz-8]| 2)' is an
L L L

equivariant function where Hl-ill ; denotes the distance
L

-~

(in E,) from z to A. Observe that g * 0 on A and
g =1 on B. Similarly for & suitably small - see [19]) or
{20] to make this precise - we can define a Lipschitz contin-
uous equivariant function f such that f = 0 on

§ 3 §
{2z « Emlﬂz—xclle < 5!. £ =1 on (2 e Emlﬂxﬁrcllbz > T}

and 0 < f < 1. Next define viR' « R' by e(s) =1 if
s ¢ (0,1] and v(s) = l-l if s > 1. Finally set V(z) =

- f(z)g(z)e (¢ (2) || 2)0'(:) for z ¢ E Then by construc-
L

»
tion V 1is uniformly bounded, locally Lipschitz continuous,
and equivariant on E_. It follows that the solution n(s,z)
of (4.18) exists for all s ¢« R and satisfies 1°. The semi-
group property for (4.18) gives 2° and the definition of g
implies 3°. rpastly 4° - 5° follow as in (19] or (20].
Assuming (4.11) for now, we give the
Proof of Lemma 4.10: Assume first that H ¢ C2 and there-
I ¢ cztsm,n) and that in (4.8), I 1is replaced by any
function ¥ where |Y¥(z) - I(z)| < won Eg u being de-
fined in (4.17). If Cmk is not a critical value of I ’
we can invoke Lemma 4.16 with ¢ = u, ¢ = Couk + and & = ¢.

Choose h ¢ Pm such that

(4.19) ucsua; I(h(u)) <c +e& .
R mk
By 1° - 2° of Lemma 4.16, n(l,h) is an equivariant homeo-
morphism of Em onto Em. Moreover if V¥(z) < ~ 2wlM,
h(z) = z and 3° of Lemma 4.16 shows n(l,h(z)) = z pro-
vided that 1I(z) ¢ O 2. € mk + #1. This is certainly
satisfied since by our choice of ¢&; Y¥(z) < - 2nAM implies
that - 2m\M - & < I(2z) < - 2nAM + ¢ < c . = &, lence

mk
n(l,h) e Pm. Consequently
(4.20) max Tn(h(WD > e -
ucsknvmk

But (4.19) and 5° of Lemma 4.16 imply that

max I(n(l,h(uw))) <¢c, = ¢

mk

e ——

o




S e b e

contrary to (4.20). Hence Cmk is a critical value of

 f SR
Em
Now suppose H is merely Cl. Let Hj denote a se-

quence of ¢? functions which converge to H on SK‘I in

R?n

uniformly in the Cl norm. Set

4
"xj"’ - x(lxl)uj(:) + (1 = x(lz])M)o(x) |2]

for 2z ¢ Rzn and

2! .
Ij(x) Io [(p,q) .\u”(xndz

n
R

for z ¢ E. Then the functions 1j| satisfy the hypothe-
ses of Lemma 4.16 for all j sufficiently large and converge
to Ilsn in FR uni formly in ct. ror such large j, de-

fine cak by (4.9) with I replaced by Ij but qm de-
pending on I. Then c;k exceeds - 2nAM since H is
close to H. Hence by the case just treated with VY = I,
cak is a critical value of Ii’!, with corresponding criti-

. j : A S j

cal point Uik The definition of R implies Wik ¢ ER.
Hence the comvactness of ER and convergence of le to
Il!n imply that along some subsequence “lk * W an

et G, .
Cmk Tluny) I("mk) with “ox O critical point of Ilnn.
Moreover I(wnk) =Chx A8 defined in (4.9).

It remains to prove (4.11). This estimate and more
follow from a comparison argument. First we define

(4.21) rh; = (S ¢ Eml S is compact, invariant, and

Snh(Bgnvy,)®e forall hetly) .

@ *
Lemma 4.22: I‘“\k # ¢. Indeed if S ¢ BR \ g. is conp:ct.

invariant, and satisfies i (s) > n(m-k) + 1, then § ¢ r_k.
Proof: Note first that such sets S exist since

1080 8" = mn via 5° of Lemma 4.1. Let h « . Since
h(z) =z for z ¢ By, hN(s) < Bg. Therefore

S an(By nvy) *0¢ is equivalent to h71(S) o vy, * ¢
Since h is a homeomorphism, i(S) = i(h"1(s)) by 1° of

-21-
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Lemma 4.1. Moreover dim vmk =2n(m + k + 1), Hence by
Lemma 4.2, h7H(S) nv, %4 and S ¢ To.

Another set of numbers can now be defined as follows:

(4.23) Cuk - SUP min I (u) kem

N
s.rmk ueS

L]
Lemma 4.24: cmk b

L ]
Proof: For each S ¢ I and each h ¢ rm, there exists a

mk
T eS8 0 h(§R n mG). Therefore

max I > I(g) > min I

h(BRank) S

= -
from which it follows that ®mk < Cmk- ]

To prove equality, observe that for each h e [me there is a

<

ch € BR n Vnk such that

I(h(ch)) = max I (h(u))
U(Eknvmk

Let S = (h(slch)h € Pm} where the notation of 4° of Lemma
4.1.is being employed. Then by construction, S e F;k and

min I > ¢

s mk

80 we have equality.

The definition of c;k makes it more amenable to lower
bounds than Cmk * While it is possible to obtain such bounds
directly, it is convenient to introduce one more comparison
problem. Recall the definition of 4 (z) in (4.7). Set

(4.25) ®(z)

[P"e.d | - s(2))at
0 R

i@ -y lzlYae - 2mm
0 R

Thus is the origin of the mysterious term - 2nAM in the
definition of rm. Equation (4.7) implies that

(4.26) ®(z) < I(2)

for all 2z ¢ E. Therefore

w3 2w
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L]

o
(4.27) Can 2 by '8 sup min ¢(u) .
s:rmk ueS

Thus to prove (4.11), it suffices to find an aporopriate

»
lower bound for bmk' To do this one final set of prelim-
inaries is needed. Any 1z ¢ e* can be written as

n @«
zZ = j'zl 121 uljwlj + Bljwij .
Therefore
n o
_2 = X ] " 2 3 2 .
(4.28) A(z) = 5 jzl 121 iagg1” + 185515

It follows that Mz)l/2 is a (Hilbert space) norm on et.
Indeed the closure Y of E. with resvect to A(z)l/z
subspace of the fractional Sobolev space (Nl/z'z(sl))zn.
Lemma 4.29: For all z e Y and r ¢ [2,), there is a con-

is a

stant wp depending only on r such that

(4.30) Hell o < w a2, |
L

i.e. Y is continuously imbedded in (Lr)zn. Moreover the

imbedding is compact.

Proof: The first assertion is a special case of standard re-
sults on Fourier series. See e.g. the main theorem on inte-
grals of fractional order in [21]). To prove the compactness,

observe that (4.30) and the Schwarz inequality imply
1 r=-1

(4.31) lIz]] » _<_wt||z||’2 A(z)T"— %
L L

The standard proof of the Rellich lemma - see e.g. [22, p.

169] - implies that Y is compactly embedded in (Lz)zn.

Therefore if 2z, ~ 0 in Y (- denoting weak convergence),

z, » 0 in ||-ﬁ and since 1z, 1is bounded in Y, z, + 0
j L2 : S 3
in |||l ¢ Vvia (4.31). Hence the imbedding is compact.
L
Now let D, = span (wij.vijlk £i<m 1<j<n} and
D, = U D where the closure is taken in Y. By Lemma
kT o M

4.29, we have
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(4.32) lz]] 4 < 4 Atz)1/2
L

for all 2z ¢ Dk where

wy 2 dk = 3up{“z||L4|z € Dk and A(z) =1} .

Moreover by compactness assertion of Lemma 4.29, there is
T € D such that A(g,) =1 and ||ck|| g =9 > 0.
L

Lemma 4.33: dk + 0 monotonically as k -+ =,

Proof: The definition of d, implies that 4,,, < d, . The
definition of Dy implies B = 0 in Y and hence
q, = ||.:k||L4 + 0 by Lemma 4.29.

The proof of (4.11) is now completed by combining
Lemma 4.24, (4.27), and the following
*
Lemma 4.34: bmk > - 2mWAM
Proof: Let
we have

S = (z ¢ D |A(z) = 0%}. By (4.25) and (4.32)

(4.35) o(z) > o% - aare’ - 2mm

-1/2

4
for all z ¢ smk’ Choosing - (ZAAMdk) leads to

(4.36) #(z) > 3 o2 - 2mM.

Making R = R(m,K) sufficiently large insures that
Smk < Bgr- Since Spk  1is radially homeomorphic to the unit
ball in D, i(S;) = n(m-k+l) > n(m-k) + 1 by 1: and 5°
of Lemma 4.1. Therefore Lemma 4.22 shows Smk € ka. Last-
ly (4.27) and (4.36) imply b, > 3 p2 - 2mAM and the proof
is complete.

Now finally we can give the
Proof of Theorem 1.5: Fix k. For this prescribed value of

k and all m, by Lemma 4.10, Cmk is a critical value of
Il!m with a corresponding critical point Yok * Moreover
(4.12) and (4.13) provide estimates for Cmx and Yk de-
pending on k but independent of m and K. Hence on

R e

ke




passing to a limit in m
get a solution w

along an approoriate subsequence we
Xk of (2.7) satisfying

(4.37) I(w) = ¢, <M,

(wk'HKz("k)) 2

2n
(4.38) / dt < M. .
0 r2N S

The estimate of Lemma 2.10 then shows HwkllLo < Mg with Mg

depending on k but not K. Hence choosing K > M

g+ We can
assume W, satisfies (2.6).

To complete the proof, it suffices to show that for k
sufficiently large, Hwkll w > T. 1If this is not the case,
L

fix K at e.g. r. By (2.6), for all k ¢ N we then have
(4.39) l|\3kHLc., < AMiHg (woll L=

and therefore

(4.40) ) = Tw) < W

where M depends on max {|H(z)], IHz(z)}\ jz] < ¥} but not
on k or K. Since along an aporopriate subsequence
mk * Sk’ then for any fixed kX and large m,

(4.41) Coxk SH+1 .

But by Lemma 4.24, (4.27), and (4.36),

(4.42)  c >min 8 > 3 02 - 2mM = —L - 2mm .
Sk A a

Since AM depends only on K which is fixed and dk + 0 as
k + « by Lemma 4.33, we can violate (4.41) by choosing k
large enough in (4.42). This contradiction completes the
proof.

Remark 4.43: It is not difficult to show that

- AHK(z)ldt

12) = "o,
0 R

satisfies the Palais-Smale condition in E or in

«25w
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(Sl))zn. This suggests that a direct infinite dimen-

| 12
{| (u’
|

sional minimax characterization of critical values of I may
be possible. The difficulty of course lies in finding an
i appropriate class of sets to work with.
] Remark 4.44: (HS) implies that for each b sgificiently

and
(b). Therefore by Theorem 1.3, there is a

large, H-i(b) is radially homeomorphic to S
H, * 0 on gl
periodic solution of (1.2) on this surface. If one could
establish better estimates for its period than we have been
able to, this approach may provide a simpler oroof of Theorem
1.5 than the one just given.
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